

Netherlands Forensic Institute Ministry of Justice

DNAStatistX

DNA

NFI Division Biological Traces

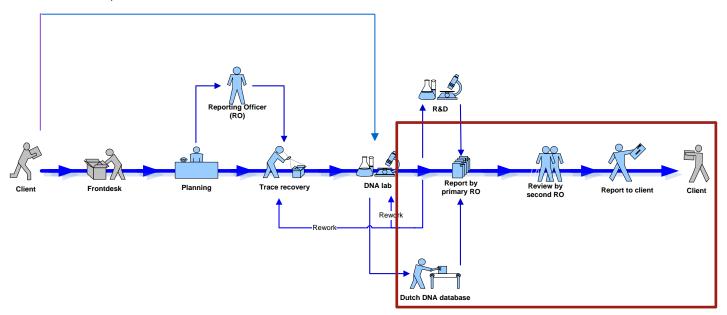
History

- NFI experience with development of:
 - Automation solution for the laboratory process
 - Automation solution for the storage of samples
 - Software tools used in DNA case work
 - Bonaparte/Napoleon
 - LOCIM tool
 - LRmix/LRmix Studio
 - SmartRank
 - MixCal

DNAxs DNAStatistX

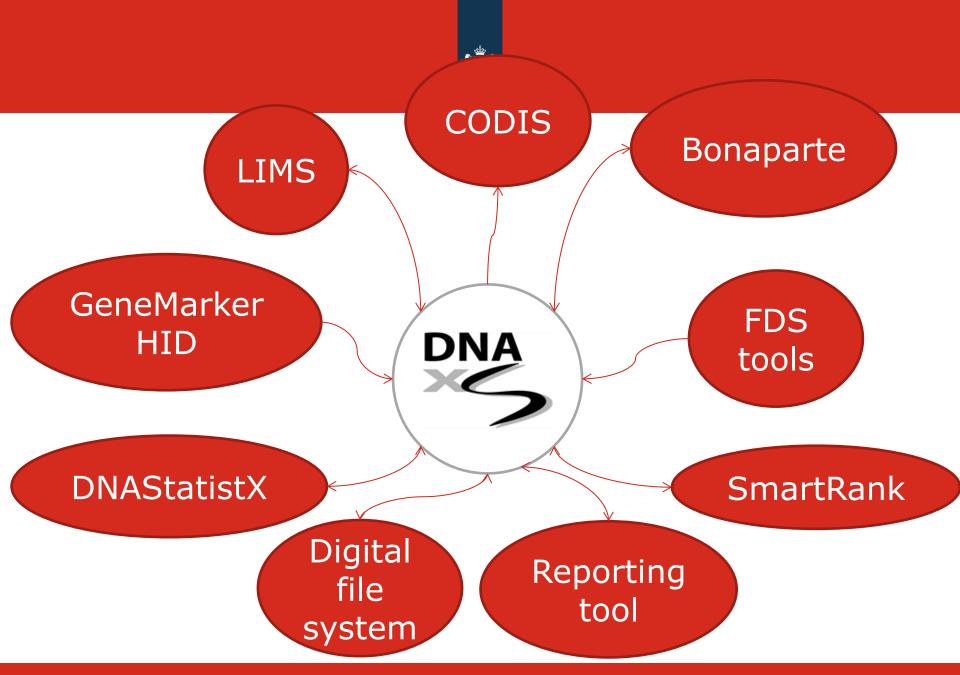
Key projects within NFI strategy

Projects to


- Allow more capacity for more casework and more traces per casework
- Allow a faster workflow and fast answers in the Police investigation process > investigative leads
- Allow a reduction in costs in DNA profiling
- Enhance evidential value by gathering more information from traces by development and implementation of
 - Molecular tools
 - Analytical and Statistical tools

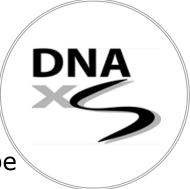
Workflow: Following a case

Reference samples



Support tools in casework interpretation

- Growing number of markers in profiling systems
 - Global STR marker systems available
 - Standard kit the PPF6C kit (27 loci)
- DNA-profile comparison therefor increasingly
 - complex
 - time-consuming
 - error-prone
- Statistical support integrated in casework workflow



DNAxs DNAStatistX

What is DNAxs

- NFI developed DNA eXpert System
 - Automatic comparison of sets of DNA-profiles
 - Summary statistics on allele numbers and genotype reproducibility
 - Mixture interpretation
 - Statistical Analysis (March 2019 release)
- In house built (Java)
- Web application (browser)
- Server based
- Validated according to ISO 17025 and NFI standards
- In use since December 2017
- Three releases per year

View profiles

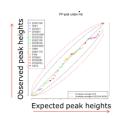
Functionality of DNAxs

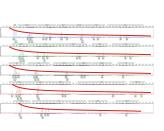
- Overview of runs and peak heights
- Bar graphs visualizing alleles/peaks heights/read counts
- Electropherograms, link to pdf of EPG
- Match profiles
 - Trace vs person
 - Trace vs trace
 - Match matrix
- \circ Derive profiles
 - LoCIM inference of major profile, consensus and composite profile
- Statistics
 - DNAStatistX module
 - Summary statistics (TAC/MAC/type I/II/III loci)
- \circ Supports several NFI profiling workflows (from HVC to complex/severe cases)
- $_{\odot}$ Connectivity to other software LIMS/CODIS/SmartRank/DNAStatistX
- Audit trail

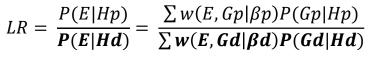
Quality control

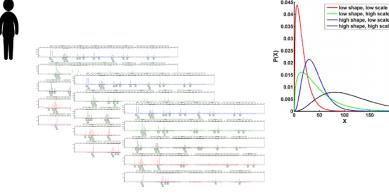
- Internal validation according to ISO 17025 standard and internal procedures
 - Validation plans
 - Validation reports
- Q-procedure and software manual
- Internal audit
- External audit
- Integration testing

DNAStatistX


- Based on EuroForMix R code
- As a separate module within DNAxs
- MLE method
- Degradation module included
- Stutter module not included
- Dye Specific detection thresholds
- Tool for number of contributors





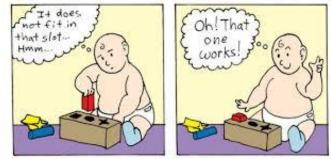

DNAStatistX features

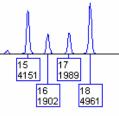
- > MLE method
- Up to four contributors
- Can handle multiple replicates
- Degradation model
- Model validation

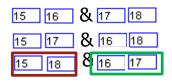
Aim for a maximum run time of 24h for a four-person mixture with three replicates and four unknowns under Hd

From EuroForMix to DNAStatistX: What's the same?

LR calculation using maximum likelihood estimate (MLE) User:


Define hypotheses


Likelihood computation (under Hp and Hd):


- 1. Estimate parameters (using optimizer, trial and error)
 - Mixture proportions
 - > Peak height expectation
 - Peak height variance
 - Degradation slope
- 2. Determine possible genotype combinations
- 3. Calculate genotype probabilities (incl. drop-in)
- 4. Calculate peak height probabilities (incl. drop-in/-out) for each genotype combination
- 5. Compute profile likelihood

LR calculation:

Likelihood Hp / likelihood Hd

From EuroForMix to DNAStatistX: What's different?

- Parts of the EuroForMix code implemented in DNAStatistX
 - Maximum Likelihood Estimate (MLE)

	EuroForMix	DNAStatistX
Code	R and C++	Java
Optimizer	nlm	CMA-ES
Model validation	AdaptIntegrate	TrapezoidIntegrator
Rare allele frequency	Lowest frequency at particular locus	1/(2*size of population)
Detection threshold	Overall	Dye (locus) specific

Which EuroForMix features in DNAStatistX?

- Degradation model
- NGM profiles sometimes showed degradation for research samples and often for casework samples
- All PowerPlex Fusion 6C (PPF6C) profiles showed degradation to some extent

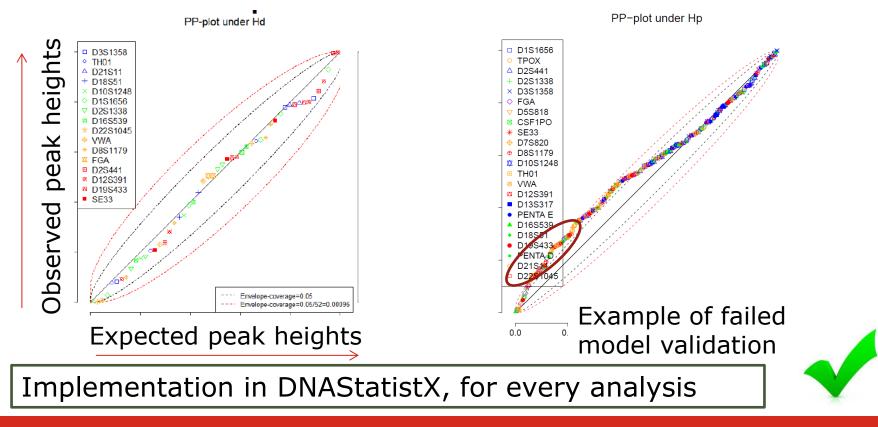
Configurable in DNAStatistX, ON by default

Stutter model

• Types of stutter:

GeneMapper/GeneMarker etc: -2, -1, -0,5, +0,5, +1 repeat unit EuroForMix: -1 repeat unit

Less specific than profile analysis software, very time consuming


NOT (YET) in DNAStatistX

Which EuroForMix features in DNAStatistX?

- Model validation
- Important quality check: Do observed PHs follow model's expected PHs

Developmental validation of DNAStatistX

- > Accuracy:
 - Comparison to analyses using ground truth parameters
 - Comparison to EuroForMix
- Precision:
 - Repeated analyses
 - Optimizer iterations
- Robustness:
 - Analyses that should fail
- Sensitivity:
 - True positives/ false negatives (Type I errors)
- > Specificity:
 - True negatives / false positives (Type II errors)

Using a range of case type samples

Collaboration with international partners

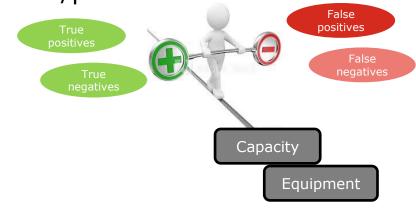
- Additional funding for research and development
- Enhance quality of software by incorporating integration testing
- Develop DNAxs in a multi-lab tool for profile comparison/evaluation/interpretation
- Across laboratory validation
- Possibility to disseminate software to other forensic institutes ISFP-2017-AG-FORENSIC - DNAxs2.0

DNAxs DNAStatistX

Partner choice: Different <u>languages</u>, different demands Excellent <u>network</u> (ISFG, EuroForGen, dna.bases) Casework laboratories of different <u>size</u> Law enforcement <u>or</u> academic

End-users? Forensic <u>DNA caseworkers</u> High demand for DNAxs-like tools Partners represent end-users with role in <u>across-Europe validation</u>

Obstacles?Computer requirements: ⇒ Hardware for each partner in projectExpert personnel:⇒ Software building expertise within NFI


 \Rightarrow All partners experienced in validations

 \Rightarrow Experienced in organizing workshops

Create guidelines by

- > Examining:
- True positives/negatives False negatives/positives
- Effect replicates
- Effect number of contributors
- Effect number of drop-outs
- Etc.

- Defining:
- Sample types/hypotheses for which LR calculations can be informative
- LR threshold
- What to consider when examining results
- What to do if model validation fails
- Etc.

Define guidelines for use in forensic DNA casework to:

- Ensure chance of obtaining 'false-positive' results is close to zero
- Minimise the number of false-negative results
- Perform LR calculations when regarded useful
- Aim for uniformity among reporting officers

DNAxs DNAStatistX

Future functionalities

- MPS data; first module for mtDNA
 - only accessible with mtDNA data
 - Sequential matching
 - Release planned for september 2019
 - EMPOP searches
 - mtDNA matchbox
 - CODIS export
- Followed with STR MPS data
- Under research investigation
 - Stutter model inclusion vs use of laboratory stutter filtered data only
 - Implementation method to estimate number of contributors
 - Deconvolution of all mixed profiles followed by LR computation

Release history DNAxs

Version	Release date	Release theme
1.0		
1.0.2		
1.0.3	04 December 2017	Initial release
1.0.4		
1.0.5		
1.1.0		
1.1.1	24 April 2018	HVC release
1.1.2	24 April 2010	TIVE Telease
1.1.3		
1.2.0	26 July 2018	Tags/notes/ Bonaparte export
1.3.0	2 April 2019	Initial DNAStatistX release